
Human Element in Software Supply
Chain Integrity

Humans are incapable of securely storing high-quality
cryptographic keys, and they have unacceptable speed and
accuracy when performing cryptographic operations. (They are
also large, expensive to maintain, difficult to manage, and they
pollute the environment. It is astonishing that these devices
continue to be manufactured and deployed. But they are
sufficiently pervasive that we must design our protocols around
their limitations.)

From “Network Security”, by Kaufmann,
Perlman and
Speciner

DoD-DHS-NIST
Software Assurance Forum

Software Supply Chain Integrity-
People Behind Principle

Facilitator: Vehbi Tasar, (ISC)²

Mini-Keynote: Alan Paller, SANS Institute

Software Supply Chain Integrity–
People Behind the Principle

• AS THE CONTROLS AND BEST PRACTICES REQUIRED TO
ENSURE THE SOFTWARE SUPPLY CHAIN INTEGRITY
EVOLVE, HOW WILL THE ROLE OF “PEOPLE” ADDRESSED?

– GLOBAL SUPPLY CHAIN, OUTSOURCING - Alan Paller

– ORGANIZATIONAL & CULTURAL ISSUES- Vehbi Tasar

– POLICY & PERSONNEL TRAINING – David Stender

– SECURE CODING AND USER INTERFACE – Robert Seacord

– USING METRICS TO MITIGATE RISK – Shari Pfleeger

Speaker Bio: Alan Paller

• Director of Research for the SANS Institute

• Founded SANS Institute in 1989 that helped educate
more than 80,000 people on technical security skills

• Edits NewsBites, the twice-a-week summary of the
most important news stories in security

• Holds degrees from Cornell and MIT

• Authored hundreds of articles and two books.

Speaker Bio: Vehbi Tasar

• Responsible for exam development at (ISC)²

• Developed the CSSLP credential that was
introduced in June, 2009.

• Prior to joining (ISC)², VP of engineering for
Invio Software in Palo Alto, CA and Persystent
Technologies in Tampa, FL.

• 30 years of product development experience
working for both small and large companies

• BS in electrical engineering, MS in Computer
Science, doctorate in electrical engineering &
CISSP and CSSLP

Organizational & Cultural Issues in Software Supply
Chain Integrity

• Differences in backgrounds, taxonomy and attitudes of
different people roles in SDLC

• Ubiquitousness of SDLC- Software supply chain touches
many people who are traditionally assumed to be outside
of the SDLC

• Complexity of software and how it is interpreted by
different roles in SDLC

• Differences in backgrounds, taxonomy and
attitudes of different people roles in SDLC

– IT Roles

– SDLC Roles

Organizational & Cultural Issues in Software Supply
Chain Integrity

CISSP & CSSLP

• International Information Systems Security Certification
Consortium (ISC)²
• CISSP – 65,000 CISSP’s in 135 countries

• CISSP People Roles: Officer, Director, Manager, Leader,
Supervisor, Analyst, Designer, Cryptologist, Cryptographer,
Cryptanalyst, Architect, Engineer, Programmer, Instructor,
Professor, Investigator, Consultant, Salesman, Representative

• CSSLP – 859 CSSLP’s in 45 countries

• CSSLP People Roles: Software Developer, Software engineer,
Architect, Product manager, Project manager, Software QA, QA
tester, Business analyst, Professionals who manage these
stakeholders

Cultural differences between roles

• The software supply chain integrity touches anyone who
is directly or indirectly part of the software development
lifecycle (SDLC), e.g.,

• IT personnel, product managers, acceptance testers, developers,
QA staff, compliance officers, managers, and users.

– There are many in the SDLC community who see security as
someone else’s responsibility

– There are many in the IT community who see software security
as someone else’s responsibility

– One of the main tasks of assuring integrity in supply chain is to
bridge the gaps between different cultures

• IT personnel, software developers, testers, and pre and post sales
engineers, etc.

Knowledge Gaps in Security

CISSP CSSLP

CSSLP CISSP

Name of the
Security Principle

Description CSSLP domain

Chain of Custody Secure the source
code during each

change and handoff
for its lifetime

Secure Software
Implementation and

Coding

Least Privilege
Access

Access data with only
the privileges needed

to do the job

Secure Software
Concepts& Secure
Software Design

Separation of Duties Do not allow
unilateral change or

control of data

Secure Software
Concepts& Secure
Software Design

Software Supply Chain Integrity Controls

Name of the
Security Principle

CISSP domain CSSLP domain

Chain of Custody Physical Security &
Access Control &

Legal Regulations,
etc. & Application

Development Security

Secure Software
Implementation and

Coding

Least Privilege
Access

Access Control &
Operations Security &

Physical Security

Secure Software
Concepts& Secure
Software Design

Separation of Duties Operations Security &
Access Control

Secure Software
Concepts& Secure
Software Design

Software Supply Chain Integrity Controls

Name of the
Security Principle

Description CSSLP domain

Tamper Resistance
& Evidence

Obstruct attempts to
tamper, and when

they occur, make sure
that they are evident

and reversible

Secure Software
Implementation and

Coding

Persystent
Protection

Protect critical data
independent of its

development location

Secure Software Design
& Software Acceptance
& Software Deployment,

Operations,
Maintenance and

Disposal

Software Supply Chain Integrity Controls

Name of the
Security Principle

CISSP domain CSSLP domain

Tamper Resistance
& Evidence

Legal Regulations,
Investigations and

Compliance &
Physical Security

Secure Software
Implementation and

Coding

Persystent
Protection

Operations Security &
Cryptography &

Security Architecture
and Design &

Business Continuity
and Disaster

Recovery Plan

Secure Software Design
& Software Acceptance
& Software Deployment,

Operations,
Maintenance and

Disposal

Software Supply Chain Integrity Controls

Name of the Security
Principle

Description CSSLP domain

Compliance
Management

Confirm the success
of the protections

continually and
independently

Secure Software
Requirements &

Software Acceptance &
Software Deployment,

Operations,
Maintenance and

Disposal

Code Testing and
Verification

Apply the methods
for code inspection

and detect suspicious
code

Secure Software
Implementation/Coding

& Secure Software
Testing & Software

Acceptance

Software Supply Chain Integrity Controls

Name of the
Security Principle

CISSP domain CSSLP domain

Compliance
Management

Legal Regulations,
Investigations and

Compliance &
Information Security
Governance and Risk

Management

Secure Software
Requirements &

Software Acceptance &
Software Deployment,

Operations,
Maintenance and

Disposal

Code Testing and
Verification

Application
Development Security

Secure Software
Implementation/Coding

& Secure Software
Testing & Software

Acceptance

Software Supply Chain Integrity Controls

• Complexity of software and how it is interpreted
by different roles in SDLC

– Mizuho Securities Case-

• Mizuho Securities– User of the software

• Tokyo Stock Exchange- Owner of the software

• Fujitsu- Developer of the software

Organizational & Cultural Issues in Software Supply
Chain Integrity

• Complexity of software and how it is interpreted
by different roles in SDLC

– Supply chain integrity vulnerabilities revealed in
Mizuho Case

• Human interface – between requirements and design

• QA process- between requirements and testing

• Communication - between user and developer through the
subcontracting chain

• Product liability – between software engineer and legal
system

• Ethical considerations- between software engineer and
society

Organizational & Cultural Issues in Software Supply
Chain Integrity

CONCLUSION

• In the new world of Internet, Web 2.0
applications, cloud applications, security is a
fundamental responsibility of everyone.

• Security of the software supply chain can be
improved by helping CISSP and CSSLP roles
learn from each other’s culture and experience.

Speaker Bio: David Stender

• Associate Chief Information Officer for
Cybersecurity and Chief Information Security
Officer, Internal Revenue Service

• More than 26 years of government, military, and
business experience in developing and
implementing security policy

• Holds CISSP, CSSLP and CAP credentials

• B.S., General Engineering and Political Science, U.S.
Naval Academy; M.S., Telecommunications

with IA emphasis, University of Maryland

University College

Speaker Bio: Robert Seacord

• Senior Vulnerability Analyst, Secure Coding Team Lead
at CERT/SEI

• Lead the secure coding initiative at CERT, including the
development of secure coding standards for the C, C++,
and Java programming languages

• Over 25 years of software development experience in
industry, defense, and research

• Author of four books in SEI series including Secure
Coding in C and C++ and the CERT C Secure Coding
Standard

• BS in Computer Science from Rensselaer Polytechnic
Institute

Software Supply Chain Integrity: The
People Behind the Principle

Secure Coding and User
Interface

Robert C. Seacord

The Spirit of C

a) Trust the programmer.

b) Don't prevent the programmer from doing what needs to
be done.

c) Keep the language small and simple.

d) Provide only one way to do an operation.

e) Make it fast, even if it is not guaranteed to be portable.

f) Make support for safety and security demonstrable (1)

(1) New for C1X

Not on the list:

a) The language should be easy to learn and easy to use.

b) Always do the least surprising thing.

C User Interface

•The C Standard defines undefined behavior as:

•Behavior, upon use of a nonportable or erroneous
program construct or of erroneous data, for which
the standard imposes no requirements. An
example of undefined behavior is the behavior on
integer overflow.

Undefined Behaviors in C

Undefined behaviors are identified in the standard:
– If a “shall” or “shall not” requirement is violated, and that

requirement appears outside of a constraint, the behavior is
undefined.

– Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior”

– by the omission of any explicit definition of behavior.

There is no difference in emphasis among these three; they
all describe “behavior that is undefined”.

C99 Annex J.2, “Undefined behavior,” contains a list of
explicit undefined behaviors in C99.

Undefined Behaviors in C

Behaviors are classified as “undefined” by the standards
committees to:

– give the implementer license not to catch certain program errors that are
difficult to diagnose;

– avoid defining obscure corner cases which would favor one
implementation strategy over another;

– identify areas of possible conforming language extension: the
implementer may augment the language by providing a definition of the
officially undefined behavior.

Implementations may
– ignore undefined behavior completely with unpredictable results

– behave in a documented manner characteristic of the

environment (with or without issuing a diagnostic)

– terminate a translation or execution (with issuing a

diagnostic).

Fun With Integers

• char x, y;

• x = -128;

• y = -x;

• if (x == y) puts("1");

• if ((x - y) == 0) puts("2");

• if ((x + y) == 2 * x) puts("3");

• if (((char)(-x) + x) != 0)
puts("4");

• if (x != -y) puts("5");

Secure Coding

University courses
• CMU
• Purdue
• University of Florida
• Santa Clara University
• St. John Fisher College

SEI Secure
Coding Course

Licensed to:
• Computer Associates
• Siemens
• SANS

Adoption by Analyzer Tools

Tool Test Suite

Application
Conformance
Testing

Secure Design
Patterns

Influence International
Standard Bodies

B
re

a
d
th

o
f
im

p
a
c
t

2003 Time 2010

Adoption by software developers
• Lockheed Martin Aeronautics
• General Atomics

WG C Secure Coding Guidelines SG

Purpose: Study the problem of producing analyzable
secure coding guidelines for C99 and C1x

First meeting held on October 27, 2009

Meetings will be held the first and third Wednesday of each
month by teleconference

Thomas Plum is the inaugural chair

Robert Seacord is the project editor

CSCG SG Wiki:
http://wiki.dinkumware.com/twiki/bin/view/CSCG/

Mailing list : wg14-cscg-l@cert.org

TSP-Secure

CERT SCALe (Source Code Analysis Lab)

Satisfy demand for source code assessments for

both government and industry organizations

Assess source code
against one or more
secure coding standards.

Provided a detailed
report of findings

Assist customers in
developing certifiably
conforming systems

DoD-DHS-NIST
Software Assurance Forum

Using Metrics to Mitigate Risk

Presented By Shari Lawrence Pfleeger, Senior Information Scientist

Problems Can Be Costly

• 1996: Ariane 5 rocket exploded because of software overflow
error in the inertial reference system. European Software
Agency reused IRS from Ariane 4 rocket to save money.
Estimated loss: $500 million.

• 1999: Mars Climate Orbiter didn’t work because Lockheed
Martin supplied NASA with imperial instead of metric units.
Estimated loss: $125 million.

• 2003-4: FBI Trilogy program, based on Service Oriented
Architecture, cancelled after many years of development.
Estimated loss: $174 million.

How Measurement Can Help

• 1996: Ariane 5 rocket exploded because of software overflow
error in the inertial reference system. European Software
Agency reused IRS from Ariane 4 rocket to save money.
Estimated loss: $500 million.
– Static code analysis could have identified potential buffer overflow.

– Analysis of underlying assumptions would have helped, too.

How Measurement Can Help

• 1999: Mars Climate Orbiter didn’t work because Lockheed
Martin supplied NASA with imperial instead of metric units.
Estimated loss: $125 million.
– Measurement-guided design review, code review or testing could

have identified problems before fielding.

Problems Can Be Costly

• 2003-4: FBI Trilogy program, based on Service Oriented
Architecture, cancelled after many years of development.
Estimated loss: $174 million.
– Static code analysis by Aerospace Corporation revealed

disproportionate number of tiny (2-, 3-, 4-line) modules, suggesting
that interfaces were unnecessarily complex.

What to Do?

• Include measurement at all stages of development.

• Include funding for thorough measurement and review at
each stage of development.

• Use measurement screen with suppliers, and don’t accept
delivery until measurement requirements are met.

